30 research outputs found

    Confinement and Viscoelastic effects on Chain Closure Dynamics

    Full text link
    Chemical reactions inside cells are typically subject to the effects both of the cell's confining surfaces and of the viscoelastic behavior of its contents. In this paper, we show how the outcome of one particular reaction of relevance to cellular biochemistry - the diffusion-limited cyclization of long chain polymers - is influenced by such confinement and crowding effects. More specifically, starting from the Rouse model of polymer dynamics, and invoking the Wilemski-Fixman approximation, we determine the scaling relationship between the mean closure time t_{c} of a flexible chain (no excluded volume or hydrodynamic interactions) and the length N of its contour under the following separate conditions: (a) confinement of the chain to a sphere of radius D, and (b) modulation of its dynamics by colored Gaussian noise. Among other results, we find that in case (a) when D is much smaller than the size of the chain, t_{c}\simND^{2}, and that in case (b), t_{c}\simN^{2/(2-2H)}, H being a number between 1/2 and 1 that characterizes the decay of the noise correlations. H is not known \`a priori, but values of about 0.7 have been used in the successful characterization of protein conformational dynamics. At this value of H (selected for purposes of illustration), t_{c}\simN^3.4, the high scaling exponent reflecting the slow relaxation of the chain in a viscoelastic medium

    Monte Carlo transient phonons transport in silicon and germanium at nanoscales

    Full text link
    Heat transport at nanoscales in semiconductors is investigated with a statistical method. The Boltzmann Transport Equation (BTE) which characterize phonons motion and interaction within the crystal lattice has been simulated with a Monte Carlo technique. Our model takes into account media frequency properties through the dispersion curves for longitudinal and transverse acoustic branches. The BTE collisional term involving phonons scattering processes is simulated with the Relaxation Times Approximation theory. A new distribution function accounting for the collisional processes has been developed in order to respect energy conservation during phonons scattering events. This non deterministic approach provides satisfactory results in what concerns phonons transport in both ballistic and diffusion regimes. The simulation code has been tested with silicon and germanium thin films; temperature propagation within samples is presented and compared to analytical solutions (in the diffusion regime). The two materials bulk thermal conductivity is retrieved for temperature ranging between 100 K and 500 K. Heat transfer within a plane wall with a large thermal gradient (250 K-500 K) is proposed in order to expose the model ability to simulate conductivity thermal dependence on heat exchange at nanoscales. Finally, size effects and validity of heat conduction law are investigated for several slab thicknesses

    Perturbation of Periodic Boundary Conditions

    Get PDF

    Effects of Staged Cooling in Shrink-Fitting Compounded Cylinders

    No full text
    This paper studies the effect of staged cooling of compounded cylinders in avoiding cracking due to the presence of large interference stresses and low fracture toughness in the presence of cryogenic temperatures. This study is motivated by the assembly procedure of the fulcrum (a compounded trunnion-hub assembly) of bascule bridges, where the fulcrum is shrunk by immersion in liquid nitrogen so that it can then be fitted into the girder of the bridge. In a few cases, the fulcrum developed cracks during the immersion in liquid nitrogen. To study the effect of staged cooling to avoid such cracking, a finite difference model was developed of a long compounded cylinder with axisymmetric response with temperature-dependent properties. The study showed that the resistance to failure was increased by as much as 50 per cent when the compounded cylinder is cooled first in a refrigerated air chamber and followed by immersion in liquid nitrogen

    On the modelling of heat conduction problem in laminated bodies

    No full text
    corecore